Diversity - the spice of the 0. mykiss life
 O2

Nez Perce Tribe Department of Fisheries Resources Management

Acknowledgements

Secesh River est. 2005

SF Clearwater River

PAYETIE
NATIONAL FOREST

Johnson Creek est. 1998

At what extent do our monitored O. mykiss delay emigration?

SECTRP (3-11\%) and JOHTRP (3-12\%) for MY2010-2021

How to account for delayed emigration?

- apparent survival to Lower Granite Dam
apparent survival (φ)-> the estimate does not distinguish between those animals that died and those that have appeared to leave the population (e.g., delayed migrants)

Basin TribPit

*underestimating apparent survival

Machine learning and deep learning-A review for ecologists

Maximilian Pichler © | Florian Hartig ©

Theoretical Ecology, University of Regensburg, Regensburg, Germany

Correspondence

Maximilian Pichler
Email: maximilian.pichler@biologie. uni-regensburg.de

Funding information

Bavarian Ministry of Science and the Arts in the Context of Bavarian Climate Research Network

Handling Editor: Arthur Porto

Abstract
 1. The popularity of machine learning (ML), deep learning (DL) and artificial intelligence (AI) has risen sharply in recent years. Despite this spike in popularity, the inner workings of ML and DL algorithms are often perceived as opaque, and their relationship to classical data analysis tools remains debated.
 2. Although it is often assumed that ML and DL excel primarily at making predictions, ML and DL can also be used for analytical tasks traditionally addressed with statistical models. Moreover, most recent discussions and reviews on ML focus mainly on DL, failing to synthesise the wealth of ML algorithms with different advantages and general principles.
 3. Here, we provide a comprehensive overview of the field of ML and DL, starting by summarizing its historical developments, existing algorithm families, differences

thread and cloth

migration \sim release site + migration year + tag season + fork length
delay no delay unknown

$$
2010-2021
$$

(factor)
autumn
\#\# mm
spring summer

LASSO, Ridge regression:

encourages simple, sparse models

Feature 1

Pichler and Hartig 2022
migration ~ release site + migration year + tag season + fork length
delay
no delay
unknown

```
JOHTRP
SECTRP
```

2010-2021 (factor)
autumn
spring
\#\# mm
summer

split data-75\% training; 25\% testing create dummy predictors normalize numeric predictor ($S D=1$, mean $=0$)
tune hyperparameters (maximize model performance)
train the models
test the models

Model performance using the test data

multinomial classification - bit more complicated than binary classification

- one v. rest approach for ROC curves
- averaged AUC (0-1)
- accuracy (truth v. predicted, 0-1)
- variable importance

averaged $A \cup C=0.821$ accuracy $=0.849$

Migration

- delay
- no delay
- unknown

Random Forest - variable importance

Thoughts:

- low prevalence delayed emigrants and high prevalence of unknown emigrants
- predictors are not doing a good job at distinguishing between delayed and unknown emigrants
- environmental predictors
- density dependent predictors
- portion of "unknowns" that are Rainbow Trout

Next steps:

- refine our model predictors and response
- more advanced MLM
- other types of predictive models
- hurry up and wait - Basin TribPit

Johnny 5 says:

