

Acknowledgements

Crews of past and present
Private landowners
Juvenile Tech Team
Project leaders

July thru June

At what extent do our monitored O. mykiss delay emigration? SECTRP (3 - 11%) and JOHTRP (3 - 12%) for MY2010-2021

How to account for delayed emigration?

- apparent survival to Lower Granite Dam

apparent survival (φ) -> the estimate does not distinguish between those animals that died and those that have appeared to leave the population (e.g., delayed migrants)

Basin TribPit

*underestimating apparent survival

REVIEW

Machine learning and deep learning—A review for ecologists

Maximilian Pichler | Florian Hartig |

Theoretical Ecology, University of Regensburg, Regensburg, Germany

Correspondence

Maximilian Pichler Email: maximilian.pichler@biologie. uni-regensburg.de

Funding information

Bavarian Ministry of Science and the Arts in the Context of Bavarian Climate Research Network

Handling Editor: Arthur Porto

Abstract

- 1. The popularity of machine learning (ML), deep learning (DL) and artificial intelligence (Al) has risen sharply in recent years. Despite this spike in popularity, the inner workings of ML and DL algorithms are often perceived as opaque, and their relationship to classical data analysis tools remains debated.
- 2. Although it is often assumed that ML and DL excel primarily at making predictions, ML and DL can also be used for analytical tasks traditionally addressed with statistical models. Moreover, most recent discussions and reviews on ML focus mainly on DL, failing to synthesise the wealth of ML algorithms with different advantages and general principles.
- 3. Here, we provide a comprehensive overview of the field of ML and DL, starting by summarizing its historical developments, existing algorithm families, differences

thread and cloth

pillowcase

DATA

Black Box

statistics, algorithms, and magic

→ RESULTS

migration ~ release site + migration year + tag season + fork length

delay no delay unknown

JOHTRP SECTRP 2010 - 2021 (factor) autumn spring summer ## mm

LASSO, Ridge regression:

encourages simple, sparse models

collection of decision trees

Pichler and Hartig 2022

migration ~ release site + migration year + tag season + fork length

delay no delay unknown JOHTRP SECTRP

2010 - 2021 (factor) autumn spring summer

mm

split data - 75% training; 25% testing

create dummy predictors

normalize numeric predictor (SD = 1, mean = 0)

tune hyperparameters (maximize model performance)

train the models

test the models

Model performance using the test data

multinomial classification - bit more complicated than binary classification

- one v. rest approach for ROC curves
- averaged AUC (0 1)
- accuracy (truth v. predicted, 0 1)
- variable importance

model output -> different probabilities for each migration class for a tagged O. mykiss

averaged AUC = 0.821

accuracy = 0.849

Random Forest - variable importance

Thoughts:

- low prevalence delayed emigrants and high prevalence of unknown emigrants
- predictors are not doing a good job at distinguishing between delayed and unknown emigrants
- environmental predictors
- density dependent predictors
- portion of "unknowns" that are Rainbow Trout

Next steps:

- refine our model predictors and response
- more advanced MLM
- other types of predictive models
- hurry up and wait Basin TribPit

Johnny 5 says:

